Аквариумный таймер

Аквариумный таймер, работающий в режиме циклической генерации, сегодня не новость для радиолюбителей. Промышленность предлагает множество различных электронных и электромеханических таймеров, программируемых для выдержки времени в определенные дни и часы недели и даже месяца. Конкуренция в области производства таймеров бытового предназначения выросла за пару лет в разы. Однако для радиолюбителя-практика и сегодня актуально создание собственных схем.


принципиальная схема аквариумного таймера

Особенности устройства заключаются в полуавтоматическом режиме работы. При наступлении рассвета (включении освещения в комнате, где установлены фото-датчики) электронное устройство издает кратковременный звуковой сигнал и включает слаботочное электромагнитное реле K2. Исполнительные контакты реле K2, в свою очередь, включают лампу аквариумного освещения вместе с компрессором-помпой (на схеме они не указаны). Лампа освещения и компрессор остаются включенными в течение почти 4 ч (зависит от номиналов элементов R5C2). По окончании выдержки времени лампа освещения и компрессор отключаются. При новом рассвете (новом включении света в комнате после периода затемнения) цикл работы устройства повторяется — так происходит ежедневно.

В основе устройства таймер на популярной микросхеме КР1006ВИ1. Он собран по классической схеме в режиме автогенерации импульсов большой длительности. На выходе таймера включено электромагнитное реле K2, своими контактами К2.1 оно управляет подачей напряжения на компрессор аквариума и осветительную лампу. Лампа может быть как люминесцентной (с соответствующей схемой управления), так и лампой накаливания с мощностью до 15 Вт. Более большая мощность не желательна из-за возможности перегрева и оплавления верхней крышки аквариума, в которой установлена лампа освещения. Компрессор — любой промышленный для аквариумов.

В схему введен узел управления самой микросхемой КР1006ВИ1 в зависимости от внешнего освещения. Это сделано для того, чтобы таймер и соответственно лампа освещения аквариума и компрессор включались только в светлое время суток, а ночью были не активны. Данный фоточувствительный узел собран на однотипных транзисторах VT1, VT2, нагруженных на электромагнитное реле K1. Коммутирующие контакты реле К1.1 подают питание на (или отключают от питания) микросхему DA1. При слабой освещенности однотипных фоторезисторов СФ3-1 (включенных параллельно и обозначенных единым обозначением на схеме PR1) транзисторы VT1, VT2 закрыты, соответственно реле К1 обесточено, контакты реле К1.1 с номерами 3 и 5 разомкнуты и на автогенератор, собранный на микросхеме DA1, напряжение не поступает. Соответственно контакты К2.1 разомкнуты и лампа освещения аквариума, а также компрессор обесточены.

Переменный резистор R1 введен в схему для удобства регулировки порога включения транзисторного каскада VT1, VT2. Резистор R1 определяет чувствительность данного узла к световому потоку.

Если освещение фоторезисторов достаточно, например днем, сопротивление фоторезисторов PR1 мало, транзисторы VT1, VT2 открыты, реле К1 включено, на микросхему DA1 подано напряжение питания, светодиод HL2 светится. На узел звуковой индикации подано питание. Микросхема DA1, включенная в режиме отсчета выдержки времени в соответствии с номиналами элементов времязадающей цепи R5C2, начинает отсчет времени. Реле K2 включено, лампа освещения аквариума и компрессор включены.

По окончании выдержки времени, заданной номиналами элементов R5C2 (примерно 240 мин) на выводе 3 микросхемы DA1, появляется высокий уровень напряжения, реле отпускает и контакты K2.1 размыкаются, лампа освещения погаснет, компрессор выключится.

Теперь следующее включение произойдет после того, как контакты K1.1 разомкнутся (это произойдет при недостаточной освещенности, например, вечером и ночью), а затем снова замкнутся с наступлением нового дня или включением основного света в комнате, где установлены фотодатчики PR1.

Узел звукового сопровождения подключается непосредственно параллельно к контактам питания того устройства, включение которого он призван контролировать, в данном случае параллельно питанию микросхемы DA1.

В основе этого электронного узла популярная микросхема K561ЛА7. Благодаря применению одного из ее логических элементов, а также использования капсюля со встроенным генератором звуковой частоты (ЗЧ) HA1 в схему нет необходимости вводить какие-либо генераторы импульсов или усилители к ним.

Схема кратковременной звуковой сигнализации основана на одном логическом элементе DD1.1 микросхемы К561ЛА7, включенном как инвертор. При подаче питания на входе элемента (выводы 1 и 2 DD1.1) присутствует низкий уровень напряжения до тех пор, пока не зарядится оксидный конденсатор C1 через ограничительный резистор R2. Пока этого не произошло, на выходе элемента (вывод 3 элемента DD1.1) присутствует высокий уровень напряжения. Он поступает через ограничивающий ток резистор R6 на базу транзистора VT3, работающего в режиме усилителя тока. Транзистор VT3 открыт, сопротивление его перехода коллектор-эмиттер близко к нулю и на пьезоэлектрический капсюль со встроенным генератором звуковой частоты HA1 подано напряжение питания.

Когда постоянное напряжение на пьезоэлектрическом капсюле со встроенным генератором HA1 окажется почти равным напряжению питания устройства капсюль переходит в режим генерации колебаний звуковой частоты.

По мере заряда конденсатора C1 через резистор R2 и внутренний узел элемента DD1.1 происходит изменение состояния выхода микросхемы. Когда напряжение на обкладках конденсатора C1 достигнет уровня переключения микросхемы, она переключится и высокий уровень напряжения на выходе DD1.1 сменится низким. Транзистор VT1 закроется. Постоянное напряжение на пьезоэлектрическом капсюле со встроенным генератором HA1 окажется почти равным нулю, и капсюль перейдет в режим ожидания.

При указанных на схеме значениях элементов R2 и C1 задержка выключения звука составит около 3 сек. Ее можно увеличить, соответственно увеличив емкость конденсатора С1. Конденсатор С1 лучше использовать оксидный типа К50-29, К50-35 и аналогичный с небольшим током утечки. В обратную сторону длительность временного интервала можно легко сократить, уменьшив сопротивление резистора R2. Если вместо него установить переменный резистор с линейной характеристикой, то получится устройство с регулируемой задержкой.

Устройство в налаживании не нуждается и начинает работать сразу. О деталях, резистор R1 — типа СП3-4 или аналогичный, с линейной характеристикой изменения сопротивления. Все постоянные резисторы R2-R6 типа МЛТ-0,125 и МЛТ-0,25. Оксидные конденсаторы типа К50-29 или аналогичные. Светодиоды любые с током 5…8 мА, например, АЛ307БМ. Транзисторы VT1, VT2 типа КТ3107А-КТ3107Ж или аналогичные. Транзистор VT3 любой кремниевый, малой и средней мощности структуры n-р-n, например, КТ603, КТ608, КТ605, КТ801, КТ972, КТ940 с любым буквенным индексом. Реле K1, К2 на напряжение срабатывания 8-12 В и ток до 30 мА. Реле К2, кроме того, должно обладать особыми свойствами коммутационных контактов, то есть рассчитанное на напряжение коммутации не менее 250 В и ток не менее 1 А. Пьезоэлектрический капсюль может быть любым, рассчитанным на напряжение 4-20 В постоянного тока, например FMQ-2015D FXP1212, KPI-4332-12.

Источник питания стабилизированный, обеспечивающий выходное напряжение 5-15 В. В этом диапазоне микросхемы DD1 и DA1 функционируют стабильно. Оксидный конденсатор C3 сглаживает пульсации питающего напряжения. Ток потребления в активном режиме звукового сигнала с применением указанных на схеме элементов составляет 60-62 мА. Громкость звука достаточна настолько, что сигнал хорошо слышен в помещении на расстоянии до 10 м.

скачать архив

Добавить комментарий

Ваш адрес email не будет опубликован.

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>