Цифровые индикаторы для блока питания

У каждого уважающего себя блока питания, имеются встроенные вольтметр и амперметр. В старых моделях устройств, индикаторы были стрелочными, однако прогресс не стоит на месте, и сейчас многим хочется видеть цифровую индикацию. Многие радиолюбители изготавливают такие индикаторы на базе микроконтроллера или применяя микросхемы АЦП, к примеру КР572ПВ2, КР572ПВ5. Однако есть и другие микросхемы, схожие по функционалу.

Одной из множества является микросхема СА3162Е, она предназначена для создания измерителя аналоговой величины с последующим отображением результата на трехразрядном цифровом индикаторе. Данная микросхема представляет собой АЦП, с максимальным входным напряжением 999 мВ и логической схемой, последняя выдает результат измерения в виде трех поочередно меняющихся двоично-десятичных четырехразрядных кодов на параллельном выходе и трех выходах для опроса разрядов схемы динамической индикации. Но чтобы получился законченный прибор, необходимо добавить дешифратор для работы семисегментного индикатора и сборку из трех семисегментных индикаторов, которые включены в матрицу для динамической индикации. А так же, трех управляющих ключей. Тип индикаторов можно применить любой, будь то светодиодные, люминесцентные, газоразрядные или даже жидкокристаллические, все будет зависеть от схемы выходного узла на дешифраторе и ключах. В данной схеме используется светодиодная индикация состоящая из трех семисегментных индикаторов с общими анодами. Они включены по схеме динамической матрицы, иными словами, все их сегментные выводы включены параллельно. А для опроса, то есть, последовательного переключения, используются общие анодные выводы.

принципиальная схема вольтметра для блока питания

На рисунке который мы видим выше, показана схема вольтметра, который может измерять напряжение от 0 до 100В. Измеряемое напряжение поступает на делитель, собранный на резисторах R1-R3, а затем далее на выводы 11-10 микросхемы D1. Конденсатор C3 служит для исключения помех, мешающих измерениям.

Резистор R4 служит для установки показания прибора на ноль, при отсутствии входного напряжения. А вот резистором R5, можно выставить предел измерения так, чтобы результат измерения соответствовал реальному, т. е. можно сказать что им калибруют прибор.

Логическая часть микросхемы СА3162Е построена по логике ТТЛ, а выходы еще и с открытыми коллекторами. На выходах «1-2-4-8» формируется двоично-десятичный код, который периодически сменяется, обеспечивая последовательную передачу данных о трех разрядах результата измерения. Если используется дешифратор ТТЛ, как, например, КР514ИД2, то его входы непосредственно подключаются к данным входам D1. Если же будет применен дешифратор логики КМОП или МОП, то его входы будет необходимо подтянуть к плюсу при помощи резисторов. Это нужно будет сделать, например, если вместо КР514ИД2 будет использован дешифратор К176ИД2 или CD4056.

Выходы дешифратора D2, через токоограничивающие резисторы R7-R13, подключаются к сегментным выводам светодиодных индикаторов Н1-НЗ. Одноименные сегментные выводы всех трех индикаторов соединены вместе. Чтобы произвести опрос индикаторов, необходимо использовать транзисторные ключи VT1-VT3, на базы которых подаются команды с выходов Н1-НЗ микросхемы D1. Эти выводы сделаны по схеме, с открытым коллектором. Активный ноль, поэтому используются транзисторы структуры p-n-p.

принципиальная схема амперметра для блока питания

Схема амперметра не сильно отличается от вольтметра. Вместо делителя здесь установлен шунт, на пятиваттном резисторе R2 сопротивлением которого 0,1 Ом. Благодаря такому шунту, прибор может измерять ток до 10А ( если уж совсем точно, то 0…9,99А). А установка на ноль и калибровка, как и в схеме вольтметра, осуществляется двумя резисторами R4 и R5.

Применяя другие делители и шунты можно задать другие пределы измерения. К примеру, 0…9,99В, 0…999 мА, 0…999В, 0…99,9А, все зависит от задач, поставленных перед изготовлением устройства. Да и вообще, на основе данных схем можно сделать и самостоятельный измерительный прибор для измерения напряжения и тока (проще говоря мультиметр). Однако стоит учесть, что даже применяя жидкокристаллические индикаторы прибор будет потреблять немалый ток, так как логическая часть СА3162Е построена на ТТЛ-логике.

Питание прибора осуществляется постоянным, стабилизированным напряжением 5В. В источнике питания, в который будут они установлены, необходимо предусмотреть наличие такого напряжения при токе не ниже 150 мА.

Налаживание устройства не представляет из себя ничего сложного. Итак, вольтметр. Сначала замкнем между собой выводы 10 и 11 D1, и крутя резистор R4 выставим нулевые показания. Далее, убираем перемычку, замыкающую выводы 11-10 и подключаем к клеммам «нагрузка» образцовый прибор, например, мультиметр. Регулируя напряжение на выходе источника, резистором R5 калибруем прибор так, чтобы его показания совпадали с показаниями мультиметра.

Амперметр. Сначала, не подключая нагрузку, регулировкой резистора R5 устанавливаем показания на ноль. Теперь потребуется постоянный резистор, сопротивлением 20 Ом и мощностью не ниже 5Вт. Устанавливаем на блоке питания напряжение 10В и подключаем этот резистор в качестве нагрузки. Крутим резистор R5 так, чтобы амперметр показал 0,5 А. Хотя никто не запрещает выполнять калибровку и по образцовому амперметру, просто автору показалось более удобным делать это с резистором. Хотя безусловно, на качество калибровки влияет погрешность сопротивления резистора.

скачать архив

Если вам понравилась статья, вы можете подписаться на RSS или E-mail рассылку. Для получения обновлений по электронной почте, введите ваш e-mail адрес в эту форму (Доставка от FeedBurner):

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *